p進整数の可視化による逆極限とp進展開の橋渡し

本稿でも引き続きp進整数 \mathbb{Z}_pについて述べる。前回の記事で逆極限によるp進整数の定義を述べた。本稿ではまずこれを視覚的に捉え、次いでp進展開との関係について述べる。

p進整数の定義おさらい

まず、逆極限によるp進整数の定義を再掲しよう。剰余環 \mathbb{Z}/p^n \mathbb{Z}\ (n=1, 2, 3, \cdots)と自然な全射 f_n : \mathbb{Z}/p^{n+1} \mathbb{Z} \to \mathbb{Z}/p^n \mathbb{Z}から成る以下のような系列が与えられたとする。

 \displaystyle{
\cdots \xrightarrow{f_4} \mathbb{Z}/p^4 \mathbb{Z} \xrightarrow{f_3} \mathbb{Z}/p^3 \mathbb{Z} \xrightarrow{f_2} \mathbb{Z}/p^2 \mathbb{Z} \xrightarrow{f_1} \mathbb{Z}/p \mathbb{Z}
}

このとき、積集合 \prod_{1 \le n} \mathbb{Z}/p^n \mathbb{Z}の以下のような部分集合を逆極限と呼ぶ。

 \displaystyle{
\lim_{\substack{\longleftarrow\\n}} \mathbb{Z}/p^n \mathbb{Z} = \left\{(a_n)_{1\le n} \in \prod_{1 \le n} \mathbb{Z}/p^n \mathbb{Z} ;\ \forall n \in \mathbb{N},\ f_n(a_{n+1}) = a_n \right\}
}

p進整数の可視化

p進整数について、 p=5を例に考えてみよう。ある5進数rについて、 a_1 \in \mathbb{Z}/5\mathbb{Z}だから、 a_1は0, 1, 2, 3, 4の何れかである。ここでは仮に a_1 = 0だったとしよう。 f_1の定義より、 f_1(a_2) = a_1 = 0となるが、 f_1は自然な全射であるから、これは a_2を5で割った余りが a_1 = 0に等しいことを意味する。また、 f_2の定義より、 f_1 \circ f_2(a_3) = f_1(a_2) = 0となるが、 f_2も自然な全射なので、やはり a_3を5で割った余りが a_1 = 0になることを意味する。これを繰り返すと、全ての a_n\ (1 < n)を5で割った余りは a_1=0に等しくなる。

次に、 a_2について考えてみる。 a_2 \in \mathbb{Z}/25\mathbb{Z}であり、かつ上の議論により a_2を5で割った余りは0だから、 a_2は0, 5, 10, 15, 20の何れかである。ここでは仮に a_2 = 5だったとしよう。 f_2の定義より、 f_2(a_3) = a_2 = 5となるが、 f_2は自然な全射であるから、これは a_3を25で割った余りが a_2 = 5に等しいことを意味する。また、 f_3の定義より、 f_2 \circ f_3(a_4) = f_2(a_3) = 5となるが、 f_3も自然な全射なので、やはり a_4を25で割った余りが a_2 = 5になることを意味する。これを繰り返すと、全ての a_n\ (2 < n)を25で割った余りは a_2=5に等しくなる。

ダメ押しで a_3についても考えてみよう。 a_3 \in \mathbb{Z}/125\mathbb{Z}であり、かつ上の議論により a_3を5で割った余りは0、25で割った余りは5だから、 a_3は5, 30, 55, 80, 105の何れかである。ここでは仮に a_3 = 80だったとしよう。すると、これまでの議論と同様に、全ての a_n\ (3 < n)を125で割った余りは a_3=80に等しくなる。

これを一般化すると、ある m \in \mathbb{N}について、全ての a_n\ (m < n) 5^mで割った余りは a_mに等しくなるということが言える。

これまで述べてきたことを可視化してみると、ある5進数rは以下のように表すことができるだろう。

f:id:peng225:20170304144228p:plain

ただし、図の描きやすさの都合上、選択されたオレンジ色の数字を大き目に描いている。この図を見ると、rがまさに何処かに収束していく様子が見て取れるだろう。この収束の様子こそが、まさに逆極限が表していることであり、p進数rそのものなのである。

逆極限から分かるp進整数のp進展開

さて、図をさらによく見ると、あるオレンジ色の箱の中身は、次のステップでは必ず5個の小さな箱に分割されていることが分かる。そこで、オレンジ色に塗られた箱は、それぞれ前のステップでの箱の中で何番目に位置するものであるかを考えてみる。

まず、 a_1 = 0について、これは(0始まりでカウントすると)0番目の箱である。 a_2 = 5は、 a_1 = 0という箱に属するものの中で1番目の箱であることが分かる。さらに、 a_3 = 80は、 a_2 = 5という箱の中で3番目に位置していることが見て取れる。

このように、各 a_nが前のステップでのオレンジの箱の中で何番目に位置しているかというのを順に調べていくと、各 \mathbb{Z}/p^n\mathbb{Z}における箱の番号をn桁目の数字とすることで、rを以下のように一意に表すことができる。

 \displaystyle{
r = \cdots 12310
}

これをrのp進展開と呼ぶ。一般に、p進展開は以下のように表すことができる。

 \displaystyle{
r = \sum_{n=1}^{\infty} a_n p^{n-1}
}

一般のp進整数のp進展開では桁数は無限に大きくなり得るわけだが、中にはある m \in \mathbb{N}について \forall n \ge m, a_n = 0となるような数も存在する。そのようなものは実は通常の整数となっている。また、その場合、ここで示したp進展開は、10進整数を通常の意味でp進数表示した場合と全く同じものになる。このことからも、 \mathbb{Z} \subset \mathbb{Z}_pであることが理解できる。

まとめ

以上、p進整数 \mathbb{Z}_pの具体例について可視化を行うことで、それがどのようにp進展開と結びついていくのかを見た。本稿の説明だけでは \mathbb{Q}_pのp進展開までは説明できていないが、逆極限との関連を視覚的に捉えることを優先し、敢えて省いた。 \mathbb{Q}_pについても分からないことが山ほどあるので、それらについても近いうちに勉強し、明らかになったところで記事にしたいと思う。

参考

数論I――Fermatの夢と類体論 (岩波オンデマンドブックス)

数論I――Fermatの夢と類体論 (岩波オンデマンドブックス)