モーメント母関数とTaylor展開の項別微分

最近、統計学を勉強している。統計学における重要な概念の1つとしてモーメント母関数がある。モーメント母関数とは簡単な計算を施すことで次々と重要な統計量が取得できる便利関数であるが、これは指数関数 f(x) = e^xのTaylor展開と関係がある。本稿ではこれについて疑問に思ったことと、その回答について書いてみる。

なお、あらかじめ述べておくが、本稿は統計学の話と見せかけて、内容はほとんど解析学の話である。

モーメント母関数

定義

まず、モーメントの定義を以下に示す[1]。

モーメント
一般に
 \displaystyle{
\mu_r = E(X^r)
}
を, Xの (原点のまわりの) r次のモーメント moment, または積率といい,
 \displaystyle{
\mu'_r = E(X - \mu)^r
} (ただし、 \mu = E(X))
を, Xの期待値 (平均) のまわりのr次のモーメンという.

本[1]は記法が少々分かりづらいが、Xの期待値のまわりのモーメントの式は恐らく \mu'_r = E\{(X - \mu)^r\}を意図しているものと思われる。

続いてモーメント母関数の定義を以下に示す[1]。

モーメント母関数
すべての次数のモーメントを生成するモーメント母関数 moment generating function を
 \displaystyle{
M_X(t) = E(e^{tX})
}
と定義する. その計算は
 \displaystyle{
M_X(t) = \sum_x e^{tx} f(x)
} (離散型)
 \displaystyle{
M_X(t) = \int_{-\infty}^{\infty} e^{tx} f(x)dx
} (連続型)
による.

モーメント母関数からモーメントを取得する

モーメント母関数を使うと面倒な計算をすることなく任意の次数のモーメントを取得することができる。そのためにはモーメント母関数をr回微分して0を代入すれば良い。すなわち、以下の式が成立する。

 \displaystyle{
\mu_r = M^{(r)}_X(0)
}

なぜこうなるのか説明する。まず、 e^{x}のTaylor展開に x = tXを代入すると以下のようになる。

 \displaystyle{
e^{tX} = \sum_{n=0}^{\infty} \frac{(tX)^n}{n!}
}

さらに両辺の期待値を取ると以下のようになる。

 \displaystyle{
\begin{eqnarray}
M_X(t) &=& E \left(\sum_{n=0}^{\infty} \frac{(tX)^n}{n!} \right) \\
             &=& \sum_{n=0}^{\infty} E \left( \frac{(tX)^n}{n!} \right) \\
             &=& \sum_{n=0}^{\infty} \frac{t^n}{n!} E (X^n) \\
             &=& \sum_{n=0}^{\infty} \frac{\mu_n}{n!} t^n
\end{eqnarray}
}

2つ目の等号は期待値の加法性による*1。上式の両辺をr回微分してみる。

 \displaystyle{
\begin{eqnarray}
M^{(r)}_X(t) &=& \left(\sum_{n=0}^{\infty} \frac{\mu_n}{n!} t^n \right)^{(r)} \\
                      &=& \sum_{n=0}^{\infty} \left(\frac{\mu_n}{n!} t^n \right)^{(r)} \\
                      &=& \sum_{n=0}^{\infty} \frac{\mu_{n+r}}{n!} t^n
\end{eqnarray}
}

あとは t = 0を代入すれば求める式が得られる。

Taylor展開と項別微分

先程の説明の中で、さらりと項別微分を行っていたことにお気づきだろうか?よく知られているように、無限級数はいつでも気軽に項別微分出来るものではなく、常にそれが可能かどうかチェックする必要がある。

ここで私が疑問に思ったのは、Taylor展開によって得られた無限級数はいつでも項別微分可能か?ということである。以下でこれについて調べていこう。

級数

Taylor展開によって得られる無限級数は、いわゆる冪級数の形をしている。冪級数とは以下のような形をした級数である[2]。

 \displaystyle{
\sum_{n=0}^{\infty} a_n (x - \alpha)^n
}

ただし、 x - \alphaにxを代入してもこの後の議論はほとんど変わらないので、ここでは以下のような冪級数のみを考える。

 \displaystyle{
\sum_{n=0}^{\infty} a_n x^n
}

項別微分可能条件

一般の無限級数に対する項別微分可能条件を以下に示す[2]。

項別微分可能条件
 \sum a_n(x) = s(x)が収束し,  a_n(x)微分可能,  a_n'(x)が連続で,  \sum a_n'(x) = t(x)が一様に収束するならば,
 \displaystyle{
s'(x) = t(x)
}
すなわち s(x) = \sum a_n(x)が項別に微分される:
 \displaystyle{
\frac{d}{dx} \sum a_n(x) = \sum \frac{d}{dx} a_n(x)
}

Taylor展開によって得られる冪級数の場合、xが収束半径内に収まってさえいれば収束は保証される。また、各項は微分可能であり、各項の導関数も当然連続である。そのため、項別微分可能であるかどうかを知るためには、以下の2点について調べれば良い。

  • 各項の導関数の無限級数、すなわち \sum_{n=1}^{\infty} n a_n x^{n-1}の収束半径は、もとの級数 \sum_{n=0}^{\infty} a_n x^nの収束半径とどういう関係にあるか?
  •  \sum_{n=1}^{\infty} n a_n x^{n-1}は収束半径内において一様収束するか?

以下でそれぞれについて調べてみよう。

無限級数の収束半径

無限級数の収束半径は以下で与えられる[2]。

Cauchy-Hadamardの定理
級数 \sum a_n x^nの収束半径rは次の値を有する:
 \displaystyle{
\frac{1}{r} = \varlimsup_{n \to \infty} \sqrt[n]{a_n}
}

 n \to \inftyのとき \sqrt[n]{n} \to 1となるため、 \sum_{n=0}^{\infty} a_n x^n \sum_{n=1}^{\infty} n a_n x^{n-1}の収束半径は一致する。

級数の一様収束条件

級数の一様収束性を考える上では、次のAbelの定理が有効である。

Abelの定理
もしも巾級数 \sum a_n x^n x=x_0なるとき収束するならば,  |x| < |x_0|なるxのすべての値に関して絶対収束し, また領域 |x| < |x_0|に含まれる任意の閉区域において一様に収束する.

ここでちょっとした疑問が生じる。収束半径rに対して、xが収束する区間はよく |x| < rというように開区間として与えられる。一方、上の定理では閉区間での一様収束性を述べており、この定理をどのように適用すれば良いか分かりづらい。この点について少し説明してみる。

 \sum_{n=1}^{\infty} n a_n x^{n-1}の収束半径をrとする。また、 \epsilonをrより十分小さい正の数であるとする。一様収束とは、ざっくり言えばある区間において関数値があらゆるxに対して同じように収束していく様子を表す。そのため、ある1つの点において一様収束を考える意味はなく、必ず区間について考える必要がある。

一様収束を考える区間として、ここでは [-r + \epsilon,\ r - \epsilon]に着目してみよう。収束半径はrなので、 x = \frac{(r - \epsilon) + r}{2}の点において \sum_{n=1}^{\infty} n a_n x^{n-1}は収束する。よってAbelの定理により |x| < \frac{(r - \epsilon) + r}{2}に含まれる任意の閉区間において \sum_{n=1}^{\infty} n a_n x^{n-1}は一様収束する。特に、 [-r + \epsilon,\ r - \epsilon]において一様収束する。 \epsilon \to 0の極限をを考えれば、結局 \sum_{n=1}^{\infty} n a_n x^{n-1}は収束半径内において一様収束すると言える。

なお、 r = \inftyの場合は若干証明が異なるが、考え方はほとんど一緒である。

以上により、Taylor展開によって得られる冪級数は何回でも項別微分できる事が分かった。

まとめ

本稿ではモーメント母関数に端を発し、Taylor展開によって得られる無限級数の項別微分可能性について述べた。結論として、そのような級数は何回でも項別微分出来ることが分かった。

分かっている人からしてみれば実に当たり前のことかも知れないが、私にしてみればこういう疑問を抱けたこと自体を嬉しく思う。こういう初歩的な事実に対しても常に懐疑的に見る気持ちを忘れずに、これからも数学を学んでいけると良い。

参考

[1]

統計学入門 (基礎統計学?)

統計学入門 (基礎統計学?)

[2]
解析概論 改訂第3版 軽装版

解析概論 改訂第3版 軽装版

*1:無限級数に対しても加法性がそのまま成立するかどうかは厳密に考える必要があると思われるが、本[1]ではあまり細かいことは書いていなかった。