Homとテンソル積が成す完全列に関するまとめ2

本稿は前回の記事の続きである。前回はHomの左完全性、及びテンソル積の右完全性について述べた。これらは常に成立しているのだが、Homの右完全性、及びテンソル積の左完全性は一般には成立しない。これらが成立するかどうかは、加群Mがどのような加群であるかに依存する。

本稿ではそのような特別な加群について紹介し、その基本的な性質をまとめてみる。

射影加群

定義

本[1]での射影加群の定義を以下に示す。

R-加群Pが射影加群 (projective module) または射影的であるとは, 任意の全射準同型 Y \xrightarrow{\beta} Zに対して, 次が全射になることである:

 \displaystyle{
\mathrm{Hom}_R(P, Y) \xrightarrow{\mathrm{Hom}(P, \beta)} \mathrm{Hom}_R(P, Z)
}

これはつまり、完全列 \{0\} \to  X \xrightarrow{\alpha} Y \xrightarrow{\beta} Z \to \{0\}に対して、以下が完全列になることを意味する。

 \displaystyle{
\{0\} \to  \mathrm{Hom}_R(P, X) \xrightarrow{\mathrm{Hom}(P, \alpha)} \mathrm{Hom}_R(P, Y) \xrightarrow{\mathrm{Hom}(P, \beta)} \mathrm{Hom}_R(P, Z) \to \{0\}
}

右端に{0}が付いているのがポイントである。

基本的性質

以下に私が特に気になった性質を列挙する。

  1. 任意の全射準同型 M \xrightarrow{\rho} Pは分裂全射である。
  2. R-加群Pが射影加群であることと、自由加群の直和因子になることは同値である。

1点目について、分裂全射のイメージを述べておく。 \rho: Z \to Xが分裂全射ということは、 Z \cong X \oplus Yであり、 \rhoを自然な射影 X \oplus Y \to Xと考えてよいということである。写像の元の加群写像の行き先の加群を用いて直和因子に分裂するイメージだと思えばよいだろう。写像の行き先が射影加群の場合、任意の全射準同型が分裂全射になるというのが、ここで述べられていることである。

2点目について、本[1]ではこのような書き方がされているが、自由加群は自身の自明な直和因子であると考えると、射影加群であると言えることになる。すなわち、任意の自由加群は射影加群であると言える。

移入加群

定義

本[1]での移入加群の定義を以下に示す。

R-加群Eが移入加群 (injective module) または移入的であるとは, 任意の単射準同型 X \xrightarrow{\alpha} Yに対して, 次が全射になることである:

 \displaystyle{
\mathrm{Hom}_R(Y, E) \xrightarrow{\mathrm{Hom}(\alpha, E)} \mathrm{Hom}_R(X, E)
}

これはつまり、完全列 \{0\} \to  X \xrightarrow{\alpha} Y \xrightarrow{\beta} Z \to \{0\}に対して、以下が完全列になることを意味する。

 \displaystyle{
\{0\} \to  \mathrm{Hom}_R(Z, E) \xrightarrow{\mathrm{Hom}(\beta, E)} \mathrm{Hom}_R(Y, E) \xrightarrow{\mathrm{Hom}(\alpha, E)} \mathrm{Hom}_R(X, E) \to \{0\}
}

右端に{0}が付いているのがポイントである。

基本的性質

以下に私が特に気になった性質を列挙する。

  1. 任意の単射準同型 E \xrightarrow{\mu} Mは分裂単射である。
  2. 移入 \mathbb{Z}-加群の任意の剰余加群は移入加群である。
  3. 任意のR-加群は移入加群の部分加群に同型である。

1点目について、分裂単射のイメージを述べておく。 \mu: X \to Zが分裂単射ということは、 Z \cong X \oplus Yであり、 \muを自然な入射 X \to X \oplus Yと考えてよいということである。写像の行き先の加群写像の元の加群を用いて直和因子に分裂するイメージだと思えばよいだろう。写像の元が移入加群の場合、任意の単射準同型が分裂単射になるというのが、ここで述べられていることである。

2点目について一番有名な例として、 \mathbb{Q}が移入 \mathbb{Z}-加群であること、それゆえ \mathbb{Q}/\mathbb{Z}も移入加群であることが挙げられる。

平坦加群

定義

本[1]での平坦加群の定義を以下に示す。

右R-加群Mが平坦加群 (flat module) または平坦とは, 左R-加群の任意の完全列 \{0\} \to X \xrightarrow{\alpha} Yに対して, 次が完全列になることである:

 \displaystyle{
\{0\} \to M \otimes_R X \xrightarrow{M \otimes \alpha} M \otimes_R Y
}

これはつまり、完全列 \{0\} \to  X \xrightarrow{\alpha} Y \xrightarrow{\beta} Z \to \{0\}に対して、以下が完全列になることを意味する。

 \displaystyle{
\{0\} \to  M \otimes_R X \xrightarrow{M \otimes \alpha} M \otimes_R Y \xrightarrow{M \otimes \beta} M \otimes_R Z \to \{0\}
}

左端に{0}が付いているのがポイントである。

基本的性質

以下に私が特に気になった性質を列挙する。

  1. 射影加群は平坦加群である。

射影加群の章で述べた事実と合わせると、以下のような加群の間の関係が得られる。

 \displaystyle{
自由加群 \Rightarrow 射影加群 \Rightarrow 平坦加群
}

このあたりの詳細はWikipedia[2]が参考になる。なんだか移入加群だけ仲間外れのような気分になるが、前回述べたHomとテンソル積の完全性に関する定理の非対称性を考えれば、そういうものなのかもしれない。

まとめ

以上、完全列にまつわる重要な加群について紹介し、その基本的な性質について述べた。最後に表にしてまとめておく。

 \mathrm{Hom}_R (M, ?)  \mathrm{Hom}_R (?, M)  M \otimes_R ?
左完全性 常に成立 常に成立 Mが平坦加群のとき成立
右完全性 Mが射影加群のとき成立 Mが移入加群のとき成立 常に成立

これらの事実は証明を追うことも大切だが、そういうものだと認めて使いこなすことも重要だと考え、事実だけを列挙したまとめを作ってみた。ホモロジー代数ではこれらの加群については知っていて当然の世界が繰り広げられるので、よく理解しておきたい。

参考

[1]

環と加群のホモロジー代数的理論 21世紀数学で重要な手法をきちんと解説する初めての本

環と加群のホモロジー代数的理論 21世紀数学で重要な手法をきちんと解説する初めての本

[2] Projective module - Wikipedia